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ABSTRACT 

We present the pseudostate-close-coupling method using a non-orthogonal Laguerre-L2 
basis function for the calculations of electron-helium scattering. Our method is a frozen-
core model of the target in which one of the electrons is restricted to the 1s He+ orbital. 
The non-orthogonal Laguerre-L2 basis function has been applied in the intermediate 
energy region (30, 40 and 50 eV) for the electron impact elastic and excitation of the 21

S, 
21

P, 23
S and 23

P states of helium. Differential and integrated cross sections are calculated 
and compared with recent experiments. The present calculation (PC) results for each case 

are discussed and compared with other calculations. It is found that the results agree quite 
well with experiments and with the other calculations. 
 
Keywords: Non-orthogonal Laguerre-L2 basis, Elastic and excitation, Intermediate energy, 
frozen-core model, Differential and integrated cross sections 

 

 

INTRODUCTION 

Collision processes involving helium are important in plasmas, 

lasers, planetary atmospheres, interstellar space, and many other 

environments. The measurement of cross sections for collisions with helium 
has been ongoing for over 40 years. Helium is an ideal choice because of the 

central role of being the simplest many electron atom for many different 

theoretical and experimental studies and the fact that it is widely used to 
normalize and calibrate results obtained from more complex targets. 

 

The ab initio calculation of cross sections is challenging for two 
reasons. First, very accurate ground and excited state wave functions are 

required. Second, the fundamental interactions between an electron and a 

complex atom must be known. At short range, the incident electron becomes 

part of a transient electron plus target system, so that a detailed treatment of 
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electronic interactions must be used. At long range, the dominant interaction 
is Coulomb attraction between the electron and the excess ionic charge. This 

attractive field for ions means that many partial waves contribute to 

excitation and that the cross section is finite and non-zero at the threshold 
energy. 

 

The energy range of interest in atomic physics has been divided into 
the low (below ionization threshold), intermediate (between one and ten 

times the ionization threshold) and high (more than ten times the ionization 

threshold) regions. The ionization threshold of the helium atom is 24.58 eV. 

Here we primarily concentrate on three energies 30, 40 and 50 eV in the 
intermediate region. This is in the most difficult intermediate energy range, 

being only 5.42 to 25.42 eV above the ionization threshold. The intermediate 

energy region extends up to the incident electron energy where velocity of 
the incident electron is typically about four times the velocity of the active 

target electrons. This is most difficult region to treat theoretically since an 

infinite number of target states can be excited and also ionizing collisions are 

possible. At intermediate energies, there should be an infinite number of 
bound target states and also continuum states should be included in the 

expansion. One approach which has had some success is based on the 

expansion where some of the target states are replaced by suitably chosen 
pseudostates which are not eigenstates of the target Hamiltonian. Instead 

each of these pseudostates represent an average in some sense over the 

complete set of target eigenstates. 
 

In atomic physics, the L
2
 method which uses square integrable (L

2
) 

functions, has been the subject of considerable study for the solution of 

electron-atom scattering problem. One approach to describing electron 
scattering from atomic targets is to use pseudostate coupled-channel 

equations. In this model one uses a finite basis of L
2
 functions to diagonalize 

the target Hamiltonian thus giving both negative and positive energy states. 
The basis is usually chosen so that the lowest-lying channels are described 

adequately while the other bound states are collectively approximated by the 

remaining energy eigenvectors. The positive energy eigenstates and 
associated L

2
 eigenvector in some way approximate the target continuum. 

The target states cannot all be included in any practical implementation of 

the electron scattering equations. A pragmatic way to approach such a 

calculation is to include the effects of the target states which are deemed to 
be most important, for example in the helium target to choose just the 

1,3
S 

and 
1,3

P levels. Unfortunately it has been observed that such expansions are 

inadequate at all but the lowest energies.  
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There is considerable evidence that the coupling to all open channels 

must be included in some way. Above the ionization threshold, this means 
that allowance for coupling to continuum channels must be made. An 

efficient way to include such coupling is by means of taking a subspace of 

the one-body Hilbert space of the target. A convenient basis for the one-body 
Hilbert space is that provided by the Laguerre functions. 

 

In this paper, we apply the L
2
 expansion methods for the helium 

atom used recently by Winata and Kartono (2004) and Kartono et al. (2005). 

The non-orthogonal Laguerre-L
2 

basis function will be used and the related 

expansions for discrete and continuum states will be considered. The finite-

basis expansions, considered as approximations to the infinite expansion will 
be studied and their convergence will be shown. The manner in which the L

2
 

approximated wave functions are related to the true eigenstates is examined 

through the underlying Gaussian quadrature. The frozen-core approximation 
will be used. 

  

In order to develop a general reliable method for the calculation of 

electron-atom scattering phenomena, the close-coupling (CC) formalism has 
been chosen. Having expanded the total wave function in a set of target 

states, it attempts to solve the resulting scattering equations without 

approximation. The pseudostate-close-coupling (PSCC) method therefore 
provides a systematic approach to increasing the multi-channel expansion by 

the use of an increasing non-orthogonal Laguerre basis sizes. In the 

expansions, completeness is approached and that if the convergence to a 
required accuracy is observed, then any larger expansions are unlikely to 

significantly alter the result. 

 

The PSCC method utilizes an expansion of the target in a complete 
set of non-orthogonal Laguerre-L

2
 basis function which forms a basis for the 

underlying Hilbert space. The PSCC method is the calculations for which, in 

addition to the treatment of true discrete eigenstates, there are also a number 
of square-integrable states with positive energies included. These are called 

pseudostates because they are not true eigenstates of the target Hamiltonian, 

but are usually obtained by diagonalizing the Hamiltonian in a non-
orthogonal Laguerre-L

2
 basis function.  

 

In terms of testing the basic assumptions of the pseudostate method 

and understanding its theoretical justification, the work of several groups 
deserves mention. Early numerical calculations for the electron-atom 

problem utilizing pseudostates were carried out by many researchers      

(Bray and Stelbovics (1992), Fursa and Bray (1995), Bartschat et al. (1996) 
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and references therein). They demonstrated that the inclusion of a few 
pseudostates significantly reduced the cross sections for scattering, bringing 

them into better overall agreement with experiment. 

 
In this article, electron impact differential and integrated cross 

sections of helium are calculated within the PSCC method. Our tests of this 

approximation for intermediate energy elastic scattering require few 
expansion states. The former has a maximum of 80 channels and couples a 

total of 25 states consisting of 7 
1
S, 6 

3
S, 6 

1
P and 6 

3
P. For intermediate 

energy excitation scattering require many expansion states; we make the 

former has a maximum of 120 channels and couples a total of 37 states 
consisting of 7 

1
S, 6 

3
S, 6 

1
P, 6 

3
P, 3 

1
D, 3 

3
D, 3 

1
F and 3 

3
F. For larger bases, 

calculations are close to the limit of our desk-top workstation computational 

resources. Comparisons with experiment are made at impact energies 30, 40 
and 50 eV to examine the range of validity of the PSCC method. 

 

 

THEORY 

In this section we discuss our method (for review see Winata and 

Kartono (2004)) of calculating the structure of the helium-target ground and 
excited states. We have written a general configuration interaction program 

which diagonalizes the helium Hamiltonian in the anti-symmetrized two-

electron basis, where the radial part of the single-particle functions 
nl

φ  are 

taken to be the non-orthogonal Laguerre-L
2
 basis function 

 

( ) ( ) ( )
1 2 1exp( / 2)

l l

nl l l n l
r r r L rφ λ λ λ

+ += − ,      (1) 

 

and where the ( )2 1l

n l
L rλ+

 are the associated Laguerre polynomial, 
l

λ  is the 

interaction parameter and n  ranges from 1 to  the basis size .N The two-

particle space is written in terms of the product of these orbital for 

coordinates 1r  and 2 .r We may rearrange these products into linear 

combinations which are eigenvalues of the total orbital angular momentum 
and total spin function.  

 

The helium atom states in configuration interaction form are (the 

notation α  and β  are used to denote the first and second electron) 

( ) ( ) ( ) ( )1 2 1 2
,

, :n lms n n n n
n n

x x C x x l ms
α β

αβ

π υ π α βϕ ϕ π υ
∞

Φ = ∑ ,   (2) 
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where the configurations are chosen so that the selection rules are satisfied 

for the combination ( )αβ  and they are correctly anti-symmetrized two-

electron states of parity ( 1)
l lα β+

− with total orbital angular momentum 

eigenvalues ,l m  and spin eigenvalues , .s υ  Here the configuration 

interaction coefficients 
( )
n

C
αβ

 satisfy the symmetry property 

 
( ) ( ) ( )

1 ,
l l l s

n n
C Cα βαβ βα+ − −

= −         (3) 

 
to ensure anti-symmetry of the two-electron system states. 

 

The target Hamiltonian 
T

H  is 

 

1 2 12T
H H H V= + + ,                    (4) 

 

where 
 

21

2
i i i i

i

Z
H K V

r
= + = − ∇ − ,                (5) 

 

for 1,2i =  is the one-electron Hamiltonian of the He
+
 ion ( 2)z = and 

 

12

12

1
V

r
= ,     (6) 

 

is the electron-electron potential. Atomic units (a.u.) are assumed 

throughout. 
 

Whereas the above Hamiltonian formalism (4) is general and 

includes two-electron excitation, in practice we have found that it is 
sufficient to make the frozen-core approximation, where one of the electrons 

is in a fixed orbital while the second electron is described by a set of 

independent L
2
 functions, thus permitting it to span the discrete and 

continuum excitations, in which all configurations have one of the electrons 
occupying the lowest orbital.  

 

The resulting target states ( )1 2,x xΦ  where x is used to denote both 

the spatial and spin coordinates, satisfy 
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2

1

1

1
0

2
m n n

Z

r α
εΦ − ∇ − − Φ = ,  , 1,2,...,m n N=                 (7) 

 

in order to get a good description of the He
+
 ion state, where nα

ε  is the 

energy associated with the 1s state of He
+
 ion. The excitation states for 

( )1 2,x xΦ  can be obtained by solving the equation 

 

2

2

2 12

1 1
0

2
m n n

Z

r r β
εΦ − ∇ − + − Φ = , , 1,2,...,m n N=        (8) 

 

where nβ
ε is the energy associated with the excitation states of the helium 

atom.   
 

In our work we simplify the problem by using the frozen-core 

model. In order to get a good description of the ground states we take 0 4λ =   

for 1Nα = . This choice generates the He
+
 1s orbital, which allows us to take 

into account short-range correlations in the ground state, as well as being 

able to obtain an accurate representation of excited discrete and continuum 

states. To obtain good Sn  excited states we take 0 0.93λ =  (triplet and 

singlet) for 1.Nβ > For Pn  excited states we takes 1 0.72λ = (triplet) 

and 1 0.73λ =  (singlet), and for Dn  excited states we take 2 0.62λ =  (triplet) 

and 2 0.63λ = (singlet). 

 

The configuration interaction coefficients 
( )
Ni

C
αβ

are given by Winata 

and Kartono (2004) and Kartono et al. (2005): 

 

( )( ) ( )( )
( )

22 2
,

1

l

l

Ni Ni

Ni

C W
X

αβ αβ

αβ

λ

π
=

−
    (9) 

 

 

where the labels α and β are used to denote the first and second electron 

and 
Ni

W  are the associated quadrature weights of Gaussian quadrature based 

Pollaczek polynomial which are given by 
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( ) ( )
( ) ( )( ) ( )( )

2
1

1

2 1 1
.

2 1
Ni l

l l

N Ni N Ni

N l
W

dN
P X P X

dx

αβ

αβ αβ

π

+

−

Γ + +
=

Γ +
             (10) 

 

 

Calculated examples of the configuration interaction coefficients and 

eigenvalues for Sn  and Pn excited states are presented in Table 1 and     

Table 2. We see that the convergence of the several lowest states is obtained 
by increasing the basis size. 

 

The time independent Schrödinger equation for electron scattering 

from atomic helium is 

 

( ) ( )0 1 2, , 0,E H x x x− Ψ =               (11) 

 

where the Hamiltonian 

 

0 01 02T
H H H V V= + + + ,               (12) 

 

and the subscript 0 is used to denote the projectile space, and the subscripts 1 

and 2 being used for target space. The Hamiltonian target operator is
T

H . 

The electron-electron potentials are 01V  and 02V . To solve this equation, we 

write Ψ  as explicitly anti-symmetrized wave functions utilizing the multi-

channel expansion 

 

( ) ( ) ( ) ( )0 1 2 01 02 1 2 0, , 1 , ,
n n

n

x x x P P x x f xΨ = − − Φ∑              (13) 

 

where 01P  and 02P  are the space (coordinate and spin) exchange operator. 

The CC equations one gets upon inserting the eigenfunctions expansion are 

 

( ) ( )0 mn mn n m m
n

K V f E fδ ε+ = −∑ ,              (14) 

 

where  

 

,
mn m n

V V= Φ Φ   ( )( )0 01 02 01 02V V V V E H P P= + + + − + .        (15) 
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and 0P α  are the space-exchange operator interchanging the coordinate labels 

for 0x  and ( 1,2).xα α =   

 

We define the coupled Lippmann-Schwinger equation for the T-
matrix as 

 
( ) ( ) ( ) ( )
f f i i f f i i

k T k k V k
− + − +Φ Φ = Φ Φ +
� � � �

 

 
( ) ( )

( )
3

2
,

2

f f n n i i

n k n

k V k k T k
d k

E kε

− +

+

Φ Φ Φ Φ
+

− −
∑∫

� � � �

                (16) 

 

where the projectile waves (discrete or continum) k
�

 satisfy 

 
( )( )0 0
k

K kε ± − =
�

                            (17) 

 

The on-shell momentum 2 2
n n

kε =  are obtained from  

    
2 2 0,

n n
E kε− − =                                                     (18) 

 

and exist only for open channels n such that 2 2 .
i i n

E kε ε= − >  

 

The partial wave Lippmann-Schwinger equation corresponding to 

Equation (16) for the reduced T-matrix elements are 
 

( ) ( )
, ,JN

f f f f f S i i i i i
L k f l s T L k i l sπ π− +

Π  

 
( ) ( )

, ,JN

f f f f f S i i i i i
L k f l s V L k i l sπ π− +

Π=  

 
( ) ( ) ( ) ( )

2
1 ,

, , , ,
.

2

JN JN
N f f f f f S S i i i i i

N
n l L k n n

L k f l s V Lk n ls Lk n ls T L k i l s
dk

E k

π π π π

ε

− − − +

Π Π

=

+
− −

∑∑∫  (19) 
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The differential cross sections for scattering from channel  i  to channel f  

at an angle θ  are given by 
 

( ) ( ) ( )
2 2

4

2
, ,

ˆ
2 , , .

ˆ
i f

fi f JN

f f f f f f S i i i i i i
m L L J

i

d k S
L k n l s T L k n l s

d k l

σ
π π π− +

Π=
Ω

∑ ∑      (20) 

 

The solution of Equations (19) and (20) are computed by Gaussian-type 

quadrature method. 
 

TABLE 1: The configuration interaction coefficients and eigenvalues ( )i iα β
ε ε+  (a.u.), which are 

produced from non-orthogonal Laguerre-L
2
 basis expansions, are shown for the ground states, 4.0

lα
λ =  

for 1,Nα =  
1,3

S excited states, 0.93lβ
λ = for  5,10,15Nβ = and 20. Powers of ten are denoted by the 

number in brackets.   

 

Nβ  iβ  
i

C
β

(singlet) 1
S  i

C
β

(triplet) 3
S  

5 

1 0.74808942 -2.145 0.87073610 -2.175 

2 0.14340948 -2.060 0.79678560(-1) -2.068 

3 0.12524468 -2.027 0.46067410(-2) -2.024 

4 0.20969070 -1.949 0.11558710(-1) -2.022 

5 0.36419709 -1.430 0.88403520(-1) -1.757 

10 

1 0.74803536 -2.145 0.88107540 -2.175 

2 0.14283304 -2.060 0.79419330(-1) -2.068 

3 0.85402873(-1) -2.033 0.38725260(-2) -2.036 

4 0.71142478(-1) -2.020 0.54271910(-2) -2.022 

5 0.91485259(-1) -2.003 0.55281310(-2) -2.001 

6 0.11761430 -1.971 0.91031150(-2) -1.956 

7 0.14979376 -1.908 0.16831390(-1) -1.851 

8 0.19177824 -1.765 0.35179440(-1) -1.521 

9 0.24834868 -1.333 0.85245700(-1) -1.150 

10 0.32731445 1.234 0.22678300 0.622 

15 

1 0.74803535 -2.145      0.88109330 -2.175 

2 0.14283304 -2.060 0.79419330(-1) -2.068 

3 0.85273406(-1) -2.033 0.38725260(-2) -2.036 

4 0.58862921(-1) -2.021 0.51871930(-2) -2.024 

5 0.52845917(-1) -2.014 0.44492450(-2) -2.015 

6 0.64270162(-1) -2.005 0.42620740(-2) -2.005 

7 0.76987035(-1) -1.991 0.57706970(-2) -1.989 

8 0.90433632(-1) -1.970 0.80686310(-2) -1.963 
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TABLE 1 (continued): The configuration interaction coefficients and eigenvalues ( )i iα β
ε ε+  (a.u.), 

which are produced from non-orthogonal Laguerre-L
2
 basis expansions, are shown for the ground states, 

4.0
lα

λ =  for 1,Nα =  
1,3

S excited states, 0.93lβ
λ = for  5,10,15Nβ = and 20. Powers of ten are 

denoted by the number in brackets.   

 

Nβ  iβ  
i

C
β

(singlet) 1
S  i

C
β

(triplet) 3
S  

 

9 0.10556541 -1.938 0.11537710(-1) -1.922 

10 0.12317497 -1.886 0.17145200(-1) -1.850 

11 0.14409329 -1.799 0.26718840(-1) -1.714 

12 0.16933340 -1.635 0.43916050(-1) -1.405 

13 0.20029170 -1.272 0.76157350(-1) -0.462 

14 0.23918206 -0.193 0.13722640 5.279 

15 0.28996389 6.027 0.24243530 7.258 

20 

1 0.74803535 -2.145 0.88109330 -2.175 

2 0.14283304 -2.060 0.79419330(-1) -2.068 

3 0.85273406(-1) -2.033 0.38725260(-2) -2.036 

4 0.58631329(-1) -2.021 0.51871930(-2) -2.024 

5 0.44218265(-1) -2.014 0.44367650(-2) -2.016 

6 0.43505554(-1) -2.010 0.35797390(-2) -2.011 

7 0.51710191(-1) -2.004 0.35903120(-2) -2.004 

8 0.59818871(-1) -1.995 0.45648320(-2) -1.995 

9 0.67871562(-1) -1.983 0.57940710(-2) -1.982 

10 0.76336005(-1) -1.967 0.73585380(-2) -1.963 

11 0.85528142(-1) -1.946 0.94600490(-2) -1.937 

12 0.95714721(-1) -1.916 0.12384490(-1) -1.900 

13 0.10716038 -1.873 0.16572750(-1) -1.845 

14 0.12015559 -1.809 0.22732620(-1) -1.759 

15 0.13504246 -1.710 0.32026690(-1) -1.612 

16 0.15225143 -1.543 0.46383180(-1) -1.334 

17 0.17236660 -1.231 0.68955020(-1) -0.713 

18 0.19625351 -0.543 0.10455180 1.156 

19 0.22532756 1.480 0.15905950 12.146 

20 0.26203222 12.975 0.23463870 13.250 
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TABLE 2: The configuration interaction coefficients and eigenvalues ( )
i iα βε ε+ (a.u.), which are 

produced from non-orthogonal Laguerre-L
2
 expansions, are shown for the ground states, 4.0

lα
λ =  for 

1,Nα = 1,3
P excited states, 0.72lβ

λ =  (triplet) and 0.73 (singlet) for 5,10,15Nβ = and 20. Powers of 

ten are denoted by the number in brackets. 

 

Nβ  iβ  
i

C
β

(singlet) 1
P  i

C
β

(triplet) 3
P  

5 

1 0.52713383 -2.124      0.51845362      -2.133 

2 0.75194511(-1) -2.055 0.47773401(-1) -2.057 

3 0.70527762(-1) -2.031 0.56809610(-1) -2.031 

4 0.11918815 -2.000 0.98616618(-1) -2.003 

5 0.22613564 -1.835 0.20712464 -1.847 

10 

1 0.52715943 -2.124 0.51776786 -2.133 

2 0.75194508(-1) -2.055 0.47773401(-1) -2.057 

3 0.63814190(-1) -2.031 0.48819960(-1) -2.032 

4 0.47330708(-1) -2.020 0.39522669(-1) -2.020 

5 0.52617990(-1) -2.011 0.43224880(-1) -2.012 

6 0.71621365(-1) -1.996 0.60068528(-1) -1.998 

7 0.95922494(-1) -1.967 0.82810476(-1)  -1.970 

8 0.12631504 -1.903 0.11303319 -1.908 

9 0.15753703 -1.726 0.14688214 -1.738 

10 0.16452349 -0.925 0.15950565 -0.966 

15 

1 0.52715943 -2.124 0.51776787 -2.133 

2 0.75194508(-1) -2.055 0.47773401(-1) -2.057 

3 0.63814422(-1) -2.031 0.48821071(-1) -2.032 

4 0.46159286(-1) -2.020 0.38807259(-1) -2.020 

5 0.35793616(-1) -2.014 0.30147522(-1) -2.014 

6 0.37682827(-1) -2.009 0.31154371(-1) -2.009 

7 0.46860362(-1) -2.002 0.39102629(-1) -2.003 

8 0.56966251(-1) -1.992 0.48192318(-1) -1.993 

9 0.68449069(-1) -1.975 0.58829337(-1) -1.977 

10 0.81765562(-1) -1.949 0.71581170(-1) -1.952 

11 0.96911921(-1) -1.906 0.86651429(-1) -1.911 

12 0.11297434 -1.827 0.10340919 -1.835 

13 0.12707977 -1.662 
0.11923534 

 
-1.675 

14 0.13233640 -1.224 0.12719364 -1.253 

15 0.11417185 0.651 0.11198233 0.562 
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TABLE 2 (continued): The configuration interaction coefficients and eigenvalues ( )
i iα βε ε+ (a.u.), 

which are produced from non-orthogonal Laguerre-L
2
 expansions, are shown for the ground states, 

4.0
lα

λ =  for 1,Nα = 1,3
P excited states, 0.72lβ

λ =  (triplet) and 0.73 (singlet) for 

5,10,15Nβ = and 20. Powers of ten are denoted by the number in brackets. 

 

Nβ  iβ  
i

C
β

(singlet) 1
P  i

C
β

(triplet) 3
P  

20 

1 0.52715943 -2.124 0.51776787 -2.133 

2 0.75194508(-1) -2.055 0.47773401(-1) -2.057 

3 0.63814422(-1) -2.031 0.48821072(-1) -2.032 

4 0.46158409(-1) -2.020 0.38807313(-1) -2.020 

5 0.35032772(-1) -2.014 0.29676385(-1) -2.014 

6 0.28609943(-1) -2.010 0.24139553(-1) -2.010 

7 0.30630000(-1) -2.007 0.25408294(-1) -2.007 

8 0.36600637(-1) -2.003 0.30557062(-1) -2.003 

9 0.42651879(-1) -1.996 0.35926131(-1) -1.997 

10 0.49027727(-1) -1.988 0.41692762(-1) -1.989 

11 0.56006792(-1) -1.976 0.48140072(-1) -1.978 

12 0.63756102(-1) -1.961 0.55464927(-1) -1.963 

13 0.72348021(-1) -1.938 0.63791996(-1) -1.941 

14 0.81718667(-1) -1.905 0.73131612(-1) -1.909 

15 0.91567088(-1) -1.854 0.83274234(-1) -1.860 

16 0.10117139 -1.770 0.93590812(-1) -1.779 

17 0.10907577 -1.619 0.10268428 -1.633 

18 0.11257588 -1.308 0.10781310 -1.332 

19 0.10690191 -0.499 0.10399619 -0.549 

20 0.83970711(-1) 2.888 0.82731961(-1) 2.734 

 

 

ELASTIC SCATTERING 

Elastic electron-helium scattering is well understood experimentally 

and theoretically and has been used extensively for calibration purposes in 

various electron-scattering applications. Therefore, we begin the presentation 
of differential cross sections by starting with intermediate energy elastic 

cross sections. The reported data set of elastic differential and integrated 

cross sections given by Register et al. (1980) at an impact energy range of 5-

200 eV are in good agreement with the more recent study by Brunger et al. 
(1992) (1.5-50 eV).  
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Therefore, the results of the experiments of Register et al. (1980) (± 

5 to 7% error bars) and Brunger et al. (1992) (± 3.5 to 5% error bars) are 
presented for comparison in this work. The calculations denoted by CCC and 

FOMBT are due to Fursa and Bray (1995) and Cartwright et al. (1992). The 

CCC and FOMBT cross sections are chosen because of established accuracy 
of this technique over a wide range of states and energies. The difference 

between the PC and CCC calculations are predominantly due to the inclusion 

of the different basis size in the CC formalism. 
 

 

INELASTIC SCATTERING FROM THE GROUND STATE 

In the Figures 4 to 15, we present the excitation differential cross 

sections of the 2
1
S, 2

1
P, 2

3
S and 2

3
P states calculated by the PSCC method 

for electron-helium scattering on the ground state at a range of projectile 
energies of 30, 40 and 50 eV. These are compared with the available 

experiments and theory. From the figures, we see that there is essentially 

complete qualitative, and often quantitative, agreement between the PC 

calculations and experiments of Trajmar et al. (1992) and Truhlar et al. 

(1973), Cartwright et al. (1992) and Khakoo et al. (1996) (± 10 to 20% error 
bars).  

 

We note one exception to this at the forward and backward angles 
for the 2

1
S, 2

1
P, 2

3
S and 2

3
P excitations, where the PC values are 

considerably below the measurements of Trajmar et al. (1992) and Truhlar et 

al. (1973), Cartwright et al. (1992) and Khakoo et al. (1996). Discrepancies 

with the experiments and other theories are still substantial at the impact 
energy range of 30, 40 and 50 eV. The discrepancy between present work 

and experiments suggests that slightly large bases used in the calculations 

are necessary to get better accuracy. 
 

 

INTEGRATED CROSS SECTIONS 

Having presented differential cross sections, we now discuss the 

corresponding integrated cross sections. As the integrated cross sections are 

very important in practical applications, we give a more detailed 
convergence study here than for differential cross sections. It is important to 

note that we shall attempt to demonstrate convergence within the frozen-core 

approximation. We have no formal way of estimating the magnitude of the 

error of this approximation. Good agreement with angular dependent 
measurements suggests that generally this error will not often exceed 10%. 
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Upon examination of Table 3, we see generally good agreement with 

available measurements. Most encouraging is the excellent agreement at all 

energies with the measurements of integrated cross sections, where the errors 
are very small. 

 
TABLE 3: Integrated cross sections (cm

2
) for electrons scattering on the ground state of helium at 30, 40 

and 50 eV. Square brackets denote powers of ten. The experimental measurements are due to            

Register et al.(1980) and Trajmar et al. (1992) (5% error). PC is due to present calculation and  

CCC to Fursa and Bray (1995). 

 

State 
Calculation and 

experiment 
30 eV 40 eV 50 eV 

1
1
S 

PC 

CCC 

Expt. 

2.23 [-16] 

2.25 [-16] 

2.11 [-16] 

1.67 [-16] 

1.69 [-16] 

1.58 [-16] 

1.28 [-16] 

1.34 [-16] 

1.26 [-16] 

2
3
S 

PC 

CCC 

Expt. 

1.91 [-18] 

1.91 [-18] 

1.90 [-18] 

1.15 [-18] 

1.14 [-18] 

1.18 [-18] 

7.51 [-16] 

7.32 [-16] 

7.40 [-16] 

2
1
S 

PC 

CCC 

Expt. 

2.30 [-18] 

2.19 [-18] 

2.40 [-18] 

2.01 [-18] 

1.87 [-18] 

2.11 [-18] 

1.74 [-18] 

1.67 [-18] 

1.94 [-18] 

2
3
P 

PC 

CCC 

Expt. 

2.58 [-18] 

2.19 [-18] 

2.60 [-18] 

1.89 [-18] 

1.71 [-18] 

1.90 [-18] 

1.30 [-18] 

1.07 [-18] 

1.40 [-18] 

2
1
P 

PC 

CCC 

Expt. 

3.80 [-18] 

3.86 [-18] 

3.75 [-18] 

6.51 [-18] 

6.59 [-18] 

6.43 [-18] 

8.16 [-18] 

8.18 [-18] 

8.21 [-18] 

 

 

CONCLUSIONS AND FUTURE WORK 

Differential and integrated cross sections for electron scattering from 

a helium atom are calculated using an extension of a PSCC method 
developed for one electron target. Differential and integrated cross sections 

are found to be in good agreement with experimental measurements. Future 

plans will be to further extend the theory for the treatment of other open and 
closed shell atomic systems. 
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Figure 1: Elastic differential cross sections for electron-helium scattering at a projectile 

energy of 30 eV. 
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Figure 2: Elastic differential cross sections for electron-helium scattering at a projectile 

energy of 40 eV. 
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Figure 3: Elastic differential cross sections for electron-helium scattering at a projectile 

energy of 50 eV. 
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Figure 4: The 21
S differential cross sections for electron-helium scattering at a projectile 

energy of 30 eV. 
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Figure 5: The 23

S differential cross sections for electron-helium scattering at a projectile 
energy of 30 eV. 
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Figure 6: The 21
S differential cross sections for electron-helium scattering at a projectile 

energy of 40 eV. 
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Figure 7: The 23
S differential cross sections for electron-helium scattering at a projectile 

energy of 40 eV. 
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Figure 8: The 21
S differential cross sections for electron-helium scattering at a projectile 

energy of 50 eV. 
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Figure 9: The 23

S differential cross sections for electron-helium scattering at a projectile 
energy of 50 eV. 
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Figure 10: The 21
P DCS for electron-helium scattering at a projectile energy of 30 eV. 
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Figure 11: The 23

P differential cross sections for electron-helium scattering at a projectile 
energy of 30 eV. 
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Figure 12: The 21
P DCS for electron-helium scattering at a projectile energy of 40 eV. 
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Figure 13: The 23
P differential cross sections for electron-helium scattering at a projectile 

energy of 40 eV. 
 

0 30 60 90 120 150 180

10
0

10
1

10
2

2
1
P

E
c
 = 50 eV

 
 

 PC

 CCC

 Cartwright et al.

 FOMBT

d
σ

/d
Ω

 (
1
0

-1
9
cm

2 sr
-1
)

θ (deg)

 
Figure 14: The 21

P DCS for electron-helium scattering at a projectile energy of 50 eV. 
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Figure 15: The 23

P differential cross sections for electron-helium scattering at a projectile 
energy of 50 eV. 
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